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Abstract  

An important question in general relativity is, what conditions are sufficient to guarantee 
that the mass of a bounded system be positive? We approach this problem for static non- 
vacuum systems with the help of a formula for the gravitational mass (a generalization of 
one given earlier by Tolman) which separates the contributions of the singularities from 
those of the matter fields. For a singularity-free system, if the matter fields obey the 
strong energy condition familiar from the "singularity theorems," then the mass will be 
positive. For systems with matter not obeying the strong energy condition, a much weak- 
ened energy condition is still sufficient to guarantee positive mass. We illustrate both of the 
cases with concrete examples. 

1. Introduction 

An important question in general relativity is, what conditions are sufficient 
to guarantee that the mass of a bounded system be positive? This problem has 
been considered extensively for vacuum systems (Brill and Deser, 1968a; Brill, 
Deser, and Fadeev, 1968), but has received scanty attention for the nonvacuum 
case (Brill and Deser, 1968b). Here we present a simple approach to the prob- 
lem for the case of static nonvacuum systems. We first derive a formula for the 
gravitational mass ( a generalization of an earlier one by Tolman) which sepa- 
rates the contributions of singularities from those of the matter fields. It fol- 
lows from it that for a singularity-free system, satisfaction of the strong energy 
condition familiar from the "singularity theorems" (Penrose and Hawking, 1970; 
Geroch, 1966) is sufficient to guarantee positive mass. We illustrate with the 
example of a system composed of a massive vector field with sources. Some 
forms of matter may disobey the strong energy condition. For these a weak- 
ened form of the energy condition may stiU prove sufficient to guarantee posi- 
tive mass. We illustrate with the example of a system composed of a massive 
scalar field with sources. 
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2. The Mass o f  a Bounded Static System 
For any static system the line element can be written as 

ds2 = - h 2 ( d x ° )  2 + Ti] dXi dXj (2.1) 

where h, o = 7ij, o = 0. The t ime-t ime component  of  the Ricci tensor is (Weyl, 
1952) 

Ro ° = - ( -g ) - l / 2 (@/27  iJh,j),i (2.2) 

where 7iJTik = 8k i. Integrating R o ° ( - g )  1/z over all 3-space away from its singu- 
larities and using Gauss's theorem we get 

- ~ R o ° ( - g )  1/2 dax = f TiJh,j dSi - f Tiih,j dSi (2.3) 
I S 

where the surface integrals at infinity ( / )  and those surrounding the singulari- 
ties (S) are taken with the usual 2-surface element dS i = ½3A/2eiik dxi dx k. In 
both integrals the normals point outward. 

Let us assume that  our space-time is asymptotically flat; we may then 
choose the space coordinates so that asymptotically they reduce to spherical 
polar coordinates r, 0, and ~b. We know that asymptotically h -+ 1 - M/r where 
M is the gravitational mass of  the system. I t  is then easy to see that the integral 
over infinity in (2.3) is just 4rrM. Since by Einstein's equations Ro ° = 8rr(To ° - 
½T), (2.3) implies 

1 i 
M = -~n f3 '  Jh,j dSi - 2 f (To O - ½T)(-g)  1/= d3x (2.4) 

S 
The special case of  this formula without the singularity term was obtained 
earlier by Tolman (1934) by a different method.  The surface integral in (2.4) 
can in fact be taken over any closed 2-surface which encloses the singularities, 
provided the volume integral extends only outside this surface. 

For a vacuum space-time M is given merely by the first integral in (2.4); 
the mass is determined directly by the behavior of  the metric near the singu- 
larity. The same happens to be true for a space-time containing only a mass- 
less scalar field ~; then 

Ta~ = q~,c~,~ - ½g~qS,~,q~, ~' (2.5) 

and since ~,o = 0, To O - ½T = 0. 

3. Systems Obeying the Strong Energy Condition 
We now specialize to nonvacuum systems devoid of singularities; this means 

in general that the fields present will have sources. We shall assume that  h 2 > 0 
everywhere, thus excluding the case with an horizon (black hole) from consider- 
ation. We now define a unit timelike vector by 

u s = h -18o  ~ (3 . I )  



POSITIVENESS OF MASS AND STRONG ENERGY CONDITION 319  

In terms of it (2.4) can be written as 

M = 2 f T*~uC~u~(-g) 1/2 d3x (3.2) 

where T*~ = Tc,~ - ½gc,6T. We recall that in the "singularity theorems" (Penrose 
and Hawking, 1970; Geroch, 1966) the strong energy condition for an arbi- 
trary unit timelike vector u c~ 

T%u~u ~ >1 0 (3.3) 

plays an important  role. It is evident from (3.2) that  if the matter  in a system 
obeys the strong energy condition, then the mass must be positive. 

As an example, we consider a massive vector field B~ of Compton length 
/s-1 coupled to point sources with strength ei; the appropriate action func- 
tional for the field and coupling is 

S = - f[Hc~H c~ + 2g2Bc~BC~](167r)-l(-g) '/2 d4X -- ~ e i fOc~ NX? 
i 

(3.4) 

where Hc~¢ = Bfl,~ - Bo~,¢ and dxff  is the differential change in coordinate x c~ 
along the worldline of  particle i. Variation of S with respect to g ~  gives 

T~t3 = [HaTHt37 + I, z2Bo~B~ - ¼go~(HTsH78 + 2#2B~BW)] (47r) -1 , (3.5) 

so that for any unit timelike vector ge  

T* ~Uc~U e = [u2(B~u~) 2 + HcdsuC~HTeu'r 

+ ¼Hat3H ~ ] (4 . )  -1 = [#2(Bc~uC~)2 

+ ½p,~itvc, uTH8 ~u 8 + ¼p~ep,r8 He,,rile8 ] (4rr)-i (3.6) 

where we have introduced the positive-definite 3-metric p~¢ = ga¢~ + uau ~. We 
recall that any such metric can be (locally) brought to a form with positive 
diagonal components  only. Then it is clear from (3.6) that T*eu~u ~ equals a 
sum of  positive terms. Therefore, the vector field and the coupling satisfy the 
strong energy condition. If the stress energy for the particles itself satisfies the 
condition, then the mass of  the static system composed of  the above ingredients 
is always positive. 

4. Systems Disobeying the Strong Energy Condition 

Not all known forms of matter  satisfy the strong energy condition. How- 
ever, the general approach based on formula (3.2) may still remain meaningful. 
For example, suppose that for the u s given by (3.1) T~*~uau ~ can be written 
as a positive definite quantity plus the 4-divergence of  a vector field whose 
magnitude fails off  faster than r -2 asymptotically. Then clearly the divergence 
can be integrated away and makes no contribution to the integral in (3.2). 
Thus M will be positive even though the strong energy condition is not neces- 
sarily satisfied. 
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M~ example of  the above is provided by the case of  a massive scalar field 
of  Compton length m - t  coupled to point sources with strength f/. The simp- 
lest parameter invariant action functional for field and coupling is 

S = - ½ f ((O,ceC~, a + m24)2)(-g) 1/2 d4x - ~ fi  f q~(-gc~Jcffx/~) 1/2 d~,i 

i (4.1) 

where 2i a = dxi°e/dXi  for particle i, and X i is a parameter along its worldline. 
The wave equation derived by varying ~ in (4.1) is 

q~,;e _ rn2~ = ~ j~(__g)l/2 5 ~4(X -- xi)(--go~g~2ffXi~) 1/2 dXi (4.2) 
i 

and the stress energy is 

rc~3 = ~),~,t~ 1 ~ m 2 ~ 2 )  

-- ~ f i (--g)  -1/2 f ~4( x -- Xi)~)2i~i3(--g,,/6.~iqr2iS)-l/2 dX i 
i 

We now find that for arbitrary u s 

r , 3ua l ,  t3 = (~ ,aua)2  _ ½m2q52 + ~ f i ( _ g ) - t / 2  f 84(x  _ x i ) (  2 
i 

(4.3) 

1 ' ~ "  3 1/2 X [~(- -ga3xi  Xi ) -- (--ge~32a23)-l/2(2i"lU,, i)  2] d ~  i (4.4) 

whose sign is not evident. 
Let us now choose u ~ = 2'~(-g~.~2~27)-1/2 at the positions of  the particles, 

and in any continuous fashion elsewhere. Substituting this into (4.4), eliminat- 
ing the integral term with the help of  (4.2), and completing some derivatives 
we find 

+ ,~ _ ~(~,  );,~ r . j u  ~ = (¢),~u~)2 ½¢),~, i ~, 

= ½( , / , , , ~u~)2  + ½ p , ~ % , , ~ , ~  _ ~(~,~,1 ,~);,~ (4.5) 

It is clear from this that T*ou~u ~ equals a sum of  positive terms plus the 
perfect divergence of  a vector that falls off  as r -a asymptotically. Furthermore, 
our choice of  u c' is, in the static case (particles at rest), identical to the pre- 
scription (3.1). Hence, by our earlier reasoning the contribution of the scalar 
field plus coupling to the mass of  a static system is positive. If, in addition, 
the matter  itself satisfies the strong energy condition, then the mass will 
always be positive. 
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